EXERCISES WEEK 38 Tuesday

1) Exercise 2.2 a-d from K\&R

2)

The momentum equations for ions and electrons are given by

$$
\begin{align*}
& \mathrm{m}_{\mathrm{i}} \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}_{\mathrm{i}}}{\mathrm{dt}}=\mathrm{e}\left(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}}_{\mathrm{i}} \times \overrightarrow{\mathrm{B}}\right) \tag{Eq. 1.1}\\
& \mathrm{m}_{\mathrm{e}} \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}_{\mathrm{e}}}{\mathrm{dt}}=-\mathrm{e}\left(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}}_{\mathrm{e}} \times \overrightarrow{\mathrm{B}}\right) \tag{Eq. 1.2}
\end{align*}
$$

a) Assume a static uniform electric field along the y-axis and a static uniform magnetic field along the z-axis. Sketch the particle trajectories separately for electrons and ions.
b) Show that the zeroth order drift of the guiding center is given by

$$
\begin{equation*}
\overrightarrow{\mathrm{v}}_{\mathrm{gc}}=\overrightarrow{\mathrm{u}}_{\mathrm{E}}=\frac{\overrightarrow{\mathrm{E}}_{\perp} \times \overrightarrow{\mathrm{B}}}{\mathrm{~B}^{2}}, \tag{Eq. 1.3}
\end{equation*}
$$

independent of both the mass and charge.
$\{$ Hint: $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})\}$
c) Assume a magnetic field along the z-direction increasing in strength with increasing y, and no electric field. Draw a sketch showing the particle trajectories separately for ions and electrons.

Assume that the magnetic field strength increase linearly with increasing y.
d) Show that the magnetic field can be expressed as

$$
\begin{equation*}
\mathrm{B}_{\mathrm{z}}=\mathrm{B}_{0 \mathrm{z}}+\left(\frac{\partial \mathrm{B}_{\mathrm{z}}}{\partial \mathrm{y}}\right) \mathrm{r}_{\mathrm{c}} \cos \phi \tag{Eq. 1.4}
\end{equation*}
$$

where $\mathrm{r}_{\mathrm{c}}=\frac{\mathrm{mv}_{\perp}}{\mathrm{eB}_{\mathrm{z}}}$ is the gyro radius, and ϕ is the angle that the position vector $\overrightarrow{\mathrm{r}}=(\mathrm{x}, \mathrm{y})$ makes with y in a guiding center reference frame.
e) Show that the average forces over one gyro-period are given by

$$
\begin{equation*}
\left\langle\mathrm{F}_{\mathrm{x}}\right\rangle=\frac{-\mathrm{qv}_{\perp}}{2 \pi} \int_{0}^{2 \pi}\left(\mathrm{~B}_{0 \mathrm{z}} \sin \phi+\mathrm{r}_{\mathrm{c}}\left(\frac{\partial \mathrm{~B}_{\mathrm{z}}}{\partial \mathrm{y}}\right) \sin \phi \cos \phi\right) \mathrm{d} \phi \tag{Eq. 1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\mathrm{F}_{\mathrm{y}}\right\rangle=\frac{-\mathrm{qv}_{\perp}}{2 \pi} \int_{0}^{2 \pi}\left(\mathrm{~B}_{0 \mathrm{z}} \cos \phi+\mathrm{r}_{\mathrm{c}}\left(\frac{\partial \mathrm{~B}_{\mathrm{z}}}{\partial \mathrm{y}}\right) \cos ^{2} \phi\right) \mathrm{d} \phi \tag{Eq. 1.6}
\end{equation*}
$$

in x and y directions, respectively.
f) Integrate Eqs. 1.5 and 1.6 and derive the following expression for the gradient drift of the guiding center:

$$
\begin{equation*}
\overrightarrow{\mathrm{v}}_{\mathrm{gc}}=-\frac{1}{2} \frac{\mathrm{mv}_{\perp}^{2}}{\mathrm{qB}_{\mathrm{z}}^{2}}\left(\frac{\partial \mathrm{~B}_{\mathrm{z}}}{\partial \mathrm{y}}\right) \hat{\mathrm{x}} \tag{Eq. 1.7}
\end{equation*}
$$

\{Hint: $\left.\int \cos ^{2} \mathrm{xdx}=\frac{1}{2} \sin \mathrm{x} \cos \mathrm{x}+\frac{1}{2} \mathrm{x}+\mathrm{C} ; \int \sin \mathrm{x} \cos \mathrm{x} d \mathrm{x}=\frac{1}{2} \sin ^{2} \mathrm{x}+\mathrm{C}\right\}$

The general expression for the gradient drift is:

$$
\begin{equation*}
\overrightarrow{\mathrm{u}}_{\mathrm{VB}}=\frac{1}{2} \mathrm{mv}_{\perp}^{2} \frac{\overrightarrow{\mathrm{~B}} \times \nabla \overrightarrow{\mathrm{B}}}{\mathrm{qB}^{3}} \tag{Eq. 1.8}
\end{equation*}
$$

3) Exercise $\mathbf{2 . 4}$ from K\&R

